The IROS 2022 demo

IROS in Kyoto is over and all Bitcrazers are finally back in Sweden again. We had a really good time in Japan and enjoyed all the interesting discussions we had with all of you, thanks!

In this blog post we will describe the demo we were running in the both and talk a bit about all the cool tech that was used. If you want to reproduce it at home or just take a look for inspiration, the code is available on github in the iros-2022 branch of our experimental firmware repo. There is also a page on our web for IROS 2022 with some more information.

The demo has similarities with our previous demo (see IROS 2019) but has been upgraded to be a fully autonomous and decentralized swarm with 9 Crazyflies buzzing around in a cage, going back to charging pads for wireless charging when the battery is running out. The demo supports multiple Crazyflies flying at the same time, avoiding collisions without a central authority, all decision making is done in each Crazyflie, that is fully decentralized.

The hardware is off-the-shelf products available in our store (links here). The software is obviously written specifically for the demo, but we wanted to use the building blocks already available in the system so the demo code is mainly “glue” to connect them together.

The cage/flying space

The flying space was box shaped, 3×2 meters in foot print and 2.5 meters high. We enclosed it in our lightweight travel cage made from aluminium pipes and a light net. It is a pretty small space to fly multiple Crazyflies in at the same time but it worked! The main problem with such a small space is down-wash from other Crazyflies and having enough room to avoid collisions. 3 Crazyflies worked pretty well, but had the space been larger it would have been possible to fly all nine.

Localization

Localization was handled by the Lighthouse positioning system. We used two base stations and the lighthouse deck on each Crazyflie which provides the Crazyflies with their current position with high accuracy.

Since the position is computed in the Crazyflie, using only data from on-board sensors, no external communication is needed in relation to the localization system. The only exception was that we uploaded the physical geometry of the system when setting up the cage.

Path planing

When a Crazyflie is flying in the demo, the standard mode of operation is to fly a randomized pattern of straight lines. From time to time (randomized) the Crazyflie can also chose to fly the spiral that we have used in earlier demos (see the IROS 2019 demo for instance).

When the battery is running out, the Crazyflie goes back to the charging pad for charging. The position is sampled before taking off and this coordinate is used as the landing point to find the charging pad. When landed the Crazyflie verifies that the battery is being charged. If the battery is not charging the Crazyflie assumes it missed the charging pad and it takes off again to adjust the position.

Charging

The Crazyflies were equiped with the Qi-charging deck for wireless charging. The charging pads are 3D-printed pads with a slope to make the Crazyflie slide into position also if the landing is not perfect. In the center of the pads there are standard Qi-chargers from IKEA mounted to provide power.

To fly continuously, the system charging rate must be higher than what is consumed by the flying Crazyflies. With a system of nine Crazyflies that are charging through Qi-chargers it is possible to keep one Crazyflie flying, just. To get some margin we increased the charging speed a bit, the down side being that the Crazyflies get warm and the batteries ware out faster.

Collision avoidance

We use the built in collision avoidance system contributed by James Alan Preiss at University of Southern California. Thanks James, it works like a charm!

There is no planing ahead, but each Crazyflie must know where the other Crazyflies are located. Based on this information they avoid each other and chose a new path to reach their target position. For this to work each Crazyflie is continuously broadcasting its position to the other Crazyflies using the peer-to-peer framework.

Swarm control and collaboration

As mentioned earlier there is no central authority that decides which Crazyflie that should take off or go to a specific position, instead this functionality is handled in each Crazyflie. To make it possible for each Crazyflie to have a rough idea of the system state, each Crazyflie is broadcasting its position and state (landed, flying etc) to the other Crazyflies. If a Crazyflie realizes that too few drones are flying, it will simply take off to fix the problem, if it sees that too many are flying it will go back to the charging pad. To avoid that all Crazyflies takes off or lands at the same time, a randomized hold-back time is used before the actions is executed. This does not fully prevent two individuals from taking off at the same time, but makes it less likely, and eventually the correct number of drones will fly.

The number of drones that should fly at the same time is a system wide parameter that can be set from one of the peers in the system. To make sure they all agree on the value, a simple mechanism is used based on the age of the data. The value and the age of the value is included in the broadcast data. When another Crazyflie receives the data it compares the age of the received data with the age of the data it already has and replaces it only if it is younger.

Sniffer

A tenth Crazyflie is used in the demo as a sniffer. It is essentially a non-flying member of the swarm that listens to the broadcast traffic and it is used to feed data to a GUI that displays the state of the system. It can also be used to inject a new value for the desired number of flying Crazyflies.

Implementation and how to run it

The code is mainly implemented as an app in the Crazyflie firmware, using the app layer. The main part is a state machine that keeps track of what to do next with some other modules handling communication and trajectories.

The code is available in the iros-2022 branch of the crazyflie-firmware-experimental repository, in the examples/demos/decentralized_swarm folder.

The examples/demos/decentralized_swarm/src/common_files/choose_app.h file controls if the code is compiled for a swarm member or the sniffer.

All Crazyflies should have the same radio channel and the same address, except the last byte. Swarm members must use addresses ending in 01 to 09 while the sniffer must use the address ending in 00.

The demo is based on the work that Marios did for a decentralized swarm this summer. Thanks Marios!

Leave a Reply

Your email address will not be published. Required fields are marked *