To communicate with the Crazyflie we are using a custom radio protocol with almost-baseband 2.4GHz radio chips: the nRF24 family from Nordic semiconductor. This kind of radio chip is easy to cable, easy to use and require a very minimal software stack. Wifi or bluetooth would have required a lot more electronic and software so we chose to not use them for the Crazyflie. We however made sure to keep the possibility to add other radio on an expansion board (ie. both UART and SPI are available on the expansion connector).
One things with using a custom radio is that we have to make a computer interface in order to be able to communicate with the copter. We called it the Crazyradio dongle:
This radio dongle is built around a nRF24LU1p chip which contains, among other things, the radio transceiver, a 8051 microcontroller and an USB device peripheral. We wrote the firmware running in the nRF24LU1 from scratch and it is compiled with the SDCC compiler. This firmware source code is going to be open like the rest of the copter code.
The radio is bidirectional which permits to send command and receive telemetry from the copter. The bandwidth is not great but has been enough to debug the regulation. On the computer side we are using python and pyUsb to interface the radio dongle.
We have added a 10 pins connector that can be used to program the dongle for development purposes (the dongle can also be updated via USB) or to power the electronic and provide signals input/output. We designed the dongle in such a way that it is going to be possible to power it with up to 15V and to input a PPM signal. This will permit to use this radio dongle with a RC remote control (ie. to control the copter without the need of a PC).