Category: Frontpage

Controlling the Crazyflie from the PC client through the Crazyradio gives you a lot of flexibility and power when it comes to coding and scripting. The drawback is that you need a computer and Crazyradio which is fine in the office, but not as convenient when flying on the go. As a part of our Friday-Fun hacks we have been working on a standalone controller with everything included to solve that problem.

I finished the first working basic prototype a few weeks ago and have done some test flying during my vacation. I (and the son of a friend) am very happy with the performance end ease of use, so I think it is time to move on and create a usable product.

standalone_controller

So far the controller is very basic, it is only two joysticks, an Arduino and a radio. All it does is to scan the joysticks and send controller packets on a fixed radio channel. Even though it is super simple I like that it is possible to just turn it on and fly, no other actions are required!

The product will have (many) more features, the question is what to add? This is your chance to be a product designer, if you have any input or wishes let us know!

Some ideas that we have so far:

  • Support other protocols to control other copters or robots
  • Arduino compatibility to make it simple to alter the functionality and behaviour
  • Expansion ports, maybe compatible with Crazyflie decks
  • USB and bluetooth low energy to use it as a generic game controller
  • A mode to use it as a Crazyradio connected to a computer over USB

We also need to come up with a name, please share your ideas!

Up until now, we’ve made our products available to customers through Seeedstudio and a number of distributors around the world. This has been a great solution since we’ve been able to focus on development of products instead of shipping packages and maintaining our own e-shop. When customers contact us and want to buy, we’ve been directing them towards local distributors where they can buy in local currency and with faster delivery times. But the last year more and more customers wanted to buy products directly from us and this has been taking up more and more of our time. The main reason has been complex purchasing procedures or local distributors not carrying the hardware the customer wants. Also if a customer starts discussing with us about what to buy, they tend to want to buy directly from us instead. Since we haven’t had a good set-up for this, we’ve been shipping packets on a case-to-case basis from our office basement (yes, the same basement where we fly with the Loco positioning). This has been very time consuming.

So, in order to optimize the sales and shipping, we’ve decided to launch our own e-shop. Our idea is that it is a complement to other distributors and the Seeedstudio Bazaar. Buying from local distributors will result in lower shipping costs and faster delivery. So we’re not aiming at replacing this, instead our goals are:

  • Have one place where we offer a full assortment of our products
  • Take responsibility for the end-to-end experience (both the purchasing and product support)

In order to service the e-shop, we’ve set up warehousing in Hong Kong, close to Shenzhen were the Seeedstudio manufacture is located. Aside from servicing the e-shop, this solution will also be used for drop-shipping custom orders, so replacing our basement packaging system.

As with most things, the more you know about something, the more you understand how complex it is. When we first started thinking about setting up our own e-shop/warehouse solution, we thought that this would probably take about a week: we evaluate a couple of solutions, select one and then just start selling/shipping. Turns out that things are more complex and this has caused a few weeks delay for the Loco positioning products since they will only be available through our shop. Now we’re hoping everything is on track, but we’re very new at this so please bare with us if there’s any hickups along the way when starting this up.

We’re opening up the store today, so you can have a look. Any feedback and comments are welcome! But as you might quickly notice, all the products are out of stock. The Loco positioning hardware as well as the other products are on their way to the warehouse, but they got a bit delayed along the way. Our best estimate is that the products are stocked at the end of the week or beginning of next week. The link to the e-shop is store.bitcraze.io.

store-launch

Here’s a photo of some of the boxes. Looks a lot like normal boxes, but these contain the Loco positioning hardware :-)

 

As summer is here, in the northern part of the hemisphere, in Sweden we like to have a bit of vacation to charge up with new energy. Thus the forward momentum will decline a bit but it also means less distraction from email requests, meetings etc. We take this opportunity to switch focus a bit and just as last year, we will put our effort in cleaning up. That means fixing bugs, improving documentation etc, things that normally doesn’t get prioritized enough.

Along with the cleanup, the Loco positioning system is still our highest priority and we work full thrust to get it in the hands of users. Hopefully we will be able to start shipping the first systems in the beginning of next week and more widely the week after that so make sure to stay tuned and sign up for the newsletter if you are interested! Have a great summer everyone!

Upcomming loco positioning indoor explorer bundle

The upcomming early access loco positioning indoor explorer bundle

The loco positioning hardware is now manufactured and we are working hard on making it available. Loco positioning is still in early access, which means that we have tested the hardware but that the software still requires some love.

One of the big features still to implement is a position stabilization and position sensor fusion in the Crazyflie. This has been worked on from two fronts in the last weeks.

Community member jackemoore has been working hard on getting the Crazyflie 2.0 with a GPS deck working with position hold. He is getting close to having a GPS position hold working but has stumbled upon some system bugs that have to be solved first. You can follow, or even better help out, with the development on the forum post.

Mike Hamer, from ETH Zurich, has started to implement a Kalman filter, based on one of his publications, for the Crazyflie 2.0 firmware. This is still very much a work in progress but the initial results look promising. Mike has found and fixed a bunch of bugs on the way, which has greatly improved the firmware quality and stability. Since it is able to fuse the position estimate with the internal sensors, the Kalman filter will pair nicely with the GPS implementation from jackemoore to add a new layer of stability, as well as with the Loco positioning system. In addition, the Kalman filter is being written in such a way that it should be easy to incorporate additional sensors into the estimate. Keep your eyes open for a blog post in a couple of weeks with more detail on the Kalman filter’s inner workings, and hopefully a fully functional Kalman filter in the Crazyflie shortly thereafter :-).

We are right now eagerly awaiting the first batch of the Loco positioning system to be done and ready for shipping. The interest for the early access release has been very encouraging and we are super happy about the attention we have received from all around the world.

We have made a new video about how to get started with the Loco positioning system that we hope you will enjoy. The video is showing the process from receiving the Loco Positioning system up to having an autonomous flying Crazyflie. The written information can be found on the wiki.

We are excited to announce that we have just started the production of the first boards for the Loco Positioning system!
Since this is the first batch of a complex new product, we thought we should be there in person. This time, Tobias and Kristoffer went to visit Seeedstudio, our product manufacturer. It is always very nice to meet them in person and to visit the factory.
Also visiting the factory is always an opportunity to discover a new fashion style!

DSC_0525

The first boards to be produced are the Loco Nodes:

DSC_0529

After a minor problem: we specified the LEDs to be mounted reversed, quickly found and fixed for this first batch by the Seeedstudios engineers, the production of the nodes is looking good and the first 8 pieces are flawless!

DSC_0538

To go with the nodes, we need to have the Loco decks. Like for the other decks we have implemented the test rig based on a Crazyflie 2.0 programmed with special flags for the test. We found some issues with the rig software but it has been quickly sorted out. So the launch of the deck production, tomorrow Tuesday, should be without any hick-ups. This is what a deck test rig looks like (note the Crazyflie 2.0 being attached on the bottom):

DSC_0534
In other news we’re welcoming Aman in the Bitcraze team for the summer. Aman is flying straight from Kiruna at the very north of Sweden (before that from Germany and even before from his university in the US). He will be looking at improving control and stability of the Crazyflie. The fist step today was to learn how to fly it manually :-).

At Lund University PhD student Kenneth Bastone and professor Kalle Åström are currently using the Crazyflie and the Bitcraze ultra-wide band based Loco Positioning system as part of their research involving local positioning systems at Centre for Mathematical Sciences. We visited them a couple of week ago and though we would write a blog post to explains a bit how they use Crazyflie and the Loco positioning system.

lps-research-loco-positioning-kalle-åström

A local positioning system creates a number of interesting mathematical problems that PhD student Kenneth Bastone and professor Kalle Åström have decided to focus their current research on.

By experimenting with different technologies to create position estimations in 3D space they have come across a variety of different ways to explore indoor localization using a local positioning system. The origin of this work area was with optical tracking and localisation, it has since grown to include any technologies and configuration capable to be used for local positioning like radio and sound.

One focus area for instance is how to estimate transceiver node positions from measured transceiver distances, this is a key issue concerning for example radio antenna array calibration or mapping and positioning using ultra-wide band. Another problem is how to determine how many nodes the system needs to generate sufficient information and to understand how often the system needs to make estimations to work sufficiently well.

According to Kalle Åström solving this kind of problems regarding local positioning systems is one step closer to a whole new area of future applications. In particular it is a technology enabler that opens up the possibilities for new ways to study motion and/or behavior, for instance in healthcare or for analyzing performance in sports.

Recently Kalle and his team has had access to an Alpha Loco Positioning System, this has allowed them to apply their algorithm more specifically to ultra-wide-band based localisation. The algorithm is able to estimate the position of the anchors and of the Crazyflie from a set of distance measurements only. Using the local positioning system the Crazyflie can estimate its position by using the distances to the anchors and the position of the anchors in space. Here we have visualized the idea in 2D:

anchors1In this diagram the red point is the Crazyflie and the green and blue points are the anchors. We will look more at the anchor A3. If we see things the other way around, from the Crazyflie point of view, all we know about anchor A3 is how far away it is. So it could be anywhere on a circle:

anchors2

Now if we decide to go forward a little bit, the possible positions of A3 is reduced to 2 locations:

anchors3anchors4

As you can see in the figure, it is not enough to only go forward, we still have two intersection for the possible positions of A3. We need to make a turn:

anchors5

Now we have reduced the possible positions down to 1. We are not done yet because in reality the Crazyflie position is not known but by applying the same idea to anchor 1 and 2 the system is constrained so that the positions of all 3 anchors and of the Crazyflie can be found over time.

The algorithm is already working with the Crazyflie and the Loco Positioning system and allows the system to find the position of the anchors and the Crazyflie using a couple of seconds of data while the Crazyflie is moving around.

According to Kalle using the Crazyflie and the Loco Positioning system has proved to have some benefits. It is open-source which means that it can be modified easily to fit the research purpose. It is also safe and very practical to work with: a test system can easily and quickly be set-up as the Crazyflie does not require specific protection for people or equipment around it.

While it is a central part of a quadcopter the core of the Crazyflie 2.0 had not moved since we released it. We deemed it to be good enough, it was flying and going fast after all.

Recently TheSeanKelly from the community did not hear it that way and started investigating the flight performance starting by the attitude control PID. The results so far are impressive!

Sean tuned the rate loop a lot, this is the loop responsible to control the angular rate of the Crazyflie in roll and pitch. Doing that and the attitude loop could be tweaked which we did a bit, the one responsible to control the absolute orientation of the copter. And the results is that two major issues with the flight performance seems to be greatly improved:

  • The take-off behavior: Crazyflie is currently not taking-off straight by itself. With the new settings this is fixed and at any thrust Crazyflie just goes straight up.
  • Attitude control: We had a lot of overshot in the attitude control. Basically it means that if you go forward 10 degrees and request 0 degree (level) the Crazyflie will overshoot with a negative angle causing it to stop. With the new tighter control if you ask +10degrees pitch the crazyflie accelerates and if you ask 0 it just stop accelerating. It will then continue at nearly constant speed. This is the “correct” behavior. This also means that the Crazyflie now reacts much more precisely and quickly to joystick controls.

We have tried to make a short video to show the new performance. Though the attitude control is really hard to show. We installed a test pilot on our Crazyflie that shows how much the new parameters helps in overall stability (I have tried to steer with old parameters as hard as I was steering with the new one). We also show more stability in pretty windy condition.

These new parameter have been pushed protected by an experimental flag. After more testing the official firmware will have much better flight performance out of the box :-).

Like we announced last week we will be releasing the Loco Positioning system in a couple of weeks. Last week, we added product pages for the Loco Positioning boards on our website. We have also made a new short video explaining a bit on how it works with a demo:

Early access means that we have tested the hardware and are pretty confident it performs well. Though the software is still in a beta stage and requires some more love and will be evolving a lot over time. Right now we made sure that the ranging is working and we have some software, based on ROS, to fly the Crazyflie autonomously. We will make sure to document carefully the steps so that you can get started with the system quickly. We see two big functionalities that will be worked-on first: making the system able to control much more Crazyflies at once (right now the software is designed to handle only one Crazyflie), and moving positioning and controller into the Crazyflie which has the potential to enhance the flight performance a lot. More on that later.

If you want to receive information as the system evolves, sign up to our mailing list (we have added everyone that mailed us last week ;-). If you want to talk to us directly do not hesitate to comment or send us a mail at locopositioning@bitcraze.io.

As early as when the first Crazyflie prototype did it’s first flight back in 2009, we where dreaming about a local positioning system that would allow our future micro quadcopter to fly autonomously indoor. This dream is now becoming a reality with the development of the Ultra Wide Band radio that we have been using the last months to develop our own local positioning system for the Crazyflie 2.0. We are now reaching a very important milestone: the first early access production batch has been ordered!

We sat down to find a name for the system and since ‘Crazy’ is kind of a theme for our products here at Bitcraze we settled for “Loco Positioning”. So the two products we are about to launch are the Loco Positioning Node and the Loco Positioning Deck.

If you want to receive information as the system evolves, sign up to our mailing list. If you want to talk to us directly do not hesitate to comment or send us a mail at locopositioning@bitcraze.io.

The positioning system is based on the Decawave DW1000 Ultra Wide Band radio chip. These radios work by transmitting very short pulses instead of full sinus waves the way a standard radio would, and the advantage for positioning is that it is possible to measure the time at which these short pulses are received very precisely. By using clever algorithms it is possible to measure the time it took for the radio signal to “fly” from one radio to another and from that we can calculate the distance between the radios.

A basic system is composed from a number of Anchors (Loco Positioning Nodes) at fixed positions and a Tag on the Crazyflie 2.0 (the Loco Positioning Deck). The system continuously measures the distances from the Tag to the Anchors and calculates the position of the Tag from that information. The concept is similar to GPS where the Anchors represent the satellites and the Tag the GPS-receiver. 4 Anchors is the theoretical minimum required to calculate a 3D position, but 6 has turned out to be more realistic number.

We have designed the Loco Positioning Nodes as standalone boards containing a micro controller and the DWM1000 UWB radio module. The nodes are intended to act as Anchors: they are setup at fix positions in the room and will serve as references for the system.

locopos_node

The Loco Positioning Deck, also based on theDWM1000 module, acts as a Tag and plugs into the Crazyflie 2.0 expansion port. It allows the Crazyflie 2.0 to calculate its absolute position in space and this is all we need to start flying it autonomously in the room. In this case the Crazyflie 2.0 acts as a Tag, but since we are always striving for flexibility, the nodes can also act as Tags for example for other robotic application.

logopos_deck

We consider the first batch to be an early access release. This means that the hardware is finished and tested but the software is still very much work in progress. Currently the Crazyflie ranges with the Anchors, while a PC running ROS interprets the ranges and calculates the estimated position. More in depth information will come if future blog-posts and e-mails on the list. For a video and some more information see our previous post “Update on Local Positioning System“.