crazyflie 2.1

As some of you may have noticed, the current LED-ring deck doesn’t play nice with the Crazyflie 2.1 Brushless. The culprit? A resource clash between the DSHOT motor signals and the WS2812 LED driver used for the LED-ring.

But good news! We’re prototyping a new LED deck that solves the conflict by switching to I2C communication. Not only does this fix the compatibility issue, it also gives us a chance to improve its features. Here’s what we’ve improved so far:

  • Using a highly efficient high powered LED
  • DC/DC driving circuitry to improve LED driving efficiency
  • 1W on each channel (red, green, blue, white)
  • LEDs on both sides so it can be mounted both on top or on bottom of the Crazyflie
LED-deck mounted underneath a Crazyflie 2.1 brushless
LED-deck with a 3D-printed diffuser mounted underneath the Crazyflie 2.1 brushless

The LED we’re using is very powerful and the light is emitted from a small area, so a light diffuser is needed to get a more pleasant light. Designing something that can be manufactured is the next step of the project. Make sure to follow our blog to get more updates on this project.

For the upcoming Crazyflie 2.1 brushless we developed, together with a leading motor manufacturing brand, a brushless 08028 motor, targeting high quality and high efficiency. The 08 – stator size motors are usually optimized for high power output, to serve the FPV market, but we where aiming for high efficiency. This means fitting maximum amount of copper around the stator, lowering KV, thin stator lamination sheets and high quality dual ball-bearings.

Specification

  • Stator size: 08028 (8.4mm x 2.8mm)
  • Stator lamination sheets: 0.2mm
  • Motor KV: 10000
  • Internal resistance: 0.52 Ohm
  • Weight: 2.4g
  • Dual ball-bearing design, using high quality NSK or NMB brands.
  • 1 mm shaft, 5 mm length
  • Matching propeller: Bitcraze 55-35mm
  • Peak current 1.8A, peak power 7.2W -> 30g thurst @ 4V (using 55-35)
  • Rated voltage: 4.2V

Together with the bitcraze 55-35 mm propeller we manage to achieve a system efficiency of over 5 W/g during hover, not to shabby. As a reference, FPV setups normally achieve around 2 W/g. This will bring the hover time for the Crazyflie 2.1 brushless, in the barebone configuration, a bit over 10 minutes.