crazyflie

As of this year around March/April we started with both Bitcraze developer meetings and Aerial-ROS meetings (the latter in collaboration with Dronecode Foundation). Now that summer is around and our office is a bit empty, we had a bit of a summer break, however we will start the meetings back up again soon! The next ROS-aerial meeting will be on the 16th of August and we will also have a Bitcraze developer meeting planned on the Wednesday the 6th of September (keep an eye on our announcements in discussions). In this blogpost we like to take the opportunity to show an overview of the meetings we had so far.

Aerial ROS meetings

In March we started a [ROS community working group] for aerial Vehicles together with our friends at Dronecode foundation, aka Aerial-ROS! We have biweekly meetings with some standard discussion meetings (with a topic) and with an invited guest presentation.

Here are the discussion topic meetings we had:

And we had several guest speakers as well! Like Miguel Fernandez-Cortizas from CAR-UPM talking about Aerostack2:

ROS-aerial Meeting guest presentation about Aerostack2

Then we had a guest presentation from Gerald Peklar from NXP talking about the Drones4Bats project:

ROS-aerial Meeting guest presentation about Drones4Bats

And the last before the summer was from Alejandro Hernández Cordero (Open Robotics Consultant) about the ROS2 Project Vehicle Gateway.

ROS-aerial Meeting guest presentation about Vehicle Gateway

The next meeting for ROS-aerial is planned on the 16th of August. Keep an eye on the ROS discourse forum.

Bitcraze Developer Meetings

We already had a couple of developer meetings before but we started recording them since April. The first recorded one was about the loco positioning system. Here first we gave a presentation about the system itself, with the latest developments cooking in our pot and time for questions afterwards.

Dev meeting about Loco positioning.

Then we had a meeting about the development of safety features in the Crazyflie in light of the Bolt developments:

Bitcraze Dev meeting about Safety features.

Then we had a meeting where Kristoffer highlighted the autonomous swarm demo we showed at ICRA 2023.

Bitcraze dev meeting about the autonomous swarm demo

And the last before the summer holiday, we had a meeting where Kimberly explained about the Crazyflie simulationmodel intergrated into Webots

Bitcraze Dev meeting about Simulation

We are still planning to have developer meeting every first wednesday of the month starting with September 6th (keep an eye on our announcements in discussions).

EPFL 101 Crazyflie presentation

Oh yeah, by the way, we also were invited by the EPFL-lis lab to give another Crazyflie 101 presentation in Lausanne last April! We made a prerecording of it so you can check it out right here:

EPFL LIS crazyflie 101 presentation.

See you all after summer!

Today, Lennart Bult from Emergent Swarns presents us with this project of a 24/7 swarming demo. Enjoy!

Over the last few months our team has been working on creating a 24/7 swarming demo. Initially tasked by Guido de Croon and Chris Verhoeven from TU Delft MAVLab and the TU Delft Robotics Institute, we set out to find our way within the Crazyflie ecosystem to gradually increase the size and capabilities of the swarm. In this article we will first talk about some of the work and methods that we used. After that, we will introduce the TU Delft Science Centre Swarming Lab and talk about some applications of swarming drones.

Developing the 24/7 swarm

The project started in February with the goal of creating a physical swarm capable of real-time collision avoidance with drones and static obstacles. We started out with three drones equipped with the Flow Deck, and by setting them up in a clever way we could perform the first collision avoidance and landing tests. We were impressed with the performance we got out of the Flow Deck, however, eventually, it is mostly a battle against the drift of the position estimate, that is, we could increase some of the margins on the collision avoidance only so far before we would either fly out of the test zone or collide with another drone. Luckily with short test flights, we were able to see some of the flaws in our algorithms and correct them before testing with the new setup.

Setup after the first expansion to eight drones.

After a few weeks of testing we got approved for the first swarm expansion, five more drones and a Lighthouse positioning setup. This is when we could do our first real tests with the collision avoidance algorithm, which, much to our own surprise, worked on the first try. This is also when we first posted a project update on LinkedIn. There were however a lot of bugs that still needed to be worked out, and a lot of system experience still to be gained. After flying for a bit longer we noticed that some of the drones would flip quite often, which is when we discovered that we needed the thrust upgrade to control the additional weight of the larger battery and charging deck.

For the charging setup we took inspiration from the Bitcraze IROS 2022 demo; we 3D printed sloped landing pads that we tape onto a wireless charger. After a few iterations we landed on a design that uses minimal printer resources and allows the Crazyflie to land a bit off-center. This last feature turned out to be quite useful considering the large amount of destabilizing airflow that is generated by 40 drones. After receiving the last order of drones we also expanded the charging setup, which at this point takes up quite a bit of floor space. There are some ideas to create a vertical landing pad stack, which would bring the additional challenge of missing the landing pad not being an option.

All 40 drones recharging before their next flight.

After prototyping the charging setup and building confidence with the initial setup, we were confident enough in our system capabilities to expand it to the point where a continuous demo of 5-8 drones is possible. Although the system integration of the previous expansion went without much trouble, we did encounter a few issues when expanding to 40 drones. The first issue of which was radio communication, we noticed that a delay in the radio communication would be present if we increased the update rate above a certain level for a specific number of drones per radio. The second issue we encountered were performance drops related to the violation of certain bounds in the collision avoidance algorithm. These two issues were very difficult to debug since it was not immediately obvious where the source of the issue was.

The third and last major issue was the increase in destabilizing airflow of 40 drones compared to 8. With 40 drones there is a noticeable breeze when you stand next to the drone cage, which is nice for summertime, but not so nice when drones need to land in a tight-packed configuration. To combat this issue there is a limit to the amount of drones that can land at the same time. There is also a minimum separation distance between two active landing pads, which reduced the severity of the induced turbulence. There are still ongoing efforts to increase the landing success rate, which is currently affected by drones running out of power during the landing procedure.

To control and monitor the swarm we designed a custom GUI, an impression of which you can see below. Although some of the buttons are still a work in progress, there are a lot of features that have already proven very useful, especially when testing a new feature.

V1 of the graphical user interface developed for the 24/7 swarm.

The code base that we created for the swarm will be largely open-sourced (only the collision avoidance will not be open-source) to provide researchers all around the world with the possibility to setup their own Crazyflie swarm for research. You can find the repository through this link. Note that the documentation and code base are still under development and might contain bugs/errors.

Human interaction

After creating all functionality to provide a continuously operating swarm demo, it was time to work on some of our stretch goals: 1. walking through the swarm whilst it is operating and 2. controlling the swarm using our arms. In the image below you can see an impression of precisely this functionality. The drones are following the operator’s gesture commands whilst performing live collision avoidance with an operator.

Team member Seppe directing the 40 drone swarm, see the full video here.

This demo requires multiple techniques and hardware elements working together to create a relatively low-latency, human-controlled swarm. We used a Kinect-like 3D sensor to perform human pose estimation, we subsequently used this data to create a dynamic obstacle in our collision avoidance software. An important element to consider here is the synchronization of the Lighthouse- and 3D sensor coordinate frames, i.e. without proper calibration the human will not be correctly positioned with respect to the drones and the drones will crash into the human. The interaction between the swarm control software and the human gesture commands also requires careful consideration, proper tuning is required to ensure a responsive system that is reliable and not too aggressive.

TUD Science Centre Swarming Lab

The next step in this project will be to set up the swarm at its new location, the TU Delft Science Centre. Here, the swarm will first and foremost be visible as a public demo, showcasing the capabilities of TU Delft state-of-the-art swarming research. There will also be a focus on developing the swarm as a research platform. This will allow TU Delft students and researchers to extend swarm functionalities and test their theory on a physical swarming system. Besides demos and academic research, there will also be worked on developing educational applications across the full educational board (primary school, high school and applied education). If you are interested in working on, or collaborating with the swarming lab on any of the above-mentioned tasks, feel free to email the lab management at operations.swarminglab@tudelft.nl.

The TU Delft Swarming Lab setup with 40 drones and charging pads for continuous operations and research.

Applications of Swarming

There are a lot of potential use-cases for fully autonomous drone swarms, ranging from indoor applications such as warehouse monitoring and factory inspection to outdoor applications such as search and rescue and surveillance. In our opinion, the true potential of drone swarms lies in applications where there is a significant need for a scalable system with a lot of built-in redundancy. A lot of additional use cases open up when we consider fully onboard autonomous systems, where the full benefits of decentralized swarming can be utilized. Currently, the size of drones needed to achieve such feats is quite large, though maybe in a few years, we could see more and more being done on drone platforms such as the Crazyflie.

A swarm inspection of an F-16 Fighting Falcon at Deltion College in Zwolle, the Netherlands.

An interesting area of application for drone swarms could be in the inspection of aircraft. Drone swarms provide a scalable and flexible means to perform a fast inspection of aircraft across an entire airfield or military base. To showcase that this can be done with any size of drone, we went to Deltion College in Zwolle to perform a mock inspection of an F-16 fighter jet. Above you can see an impression of the inspection. Another area of application is search and rescue, where there is a need for systems that can find people or objects of interest in unknown and cluttered environments. Furthermore, the area that needs to be searched is usually very large and sometimes difficult to travel on foot. A drone swarm could provide fast and reliable coverage of the area of interest, whilst providing full data traceability. Seppe and Lennart will work on creating drone swarms for these use cases with the start-up Emergent Swarms.

In just about 2 weeks, it’s ICRA 2023, which, as you could guess from the title of the post, is in London. The ExCel venue will welcome the world’s top academics, researchers, and industry representatives from May 29 to June 2nd, and that’s something we don’t want to miss.

ICRA is a conference that we hold dear and attended quite a few times – whether in person or online. We’ll be holding a booth there so don’t hesitate to pass by to say hello and see our demo!

We will be using the same demo as the one from IROS 2022; a fully decentralized swarm with the Lighthouse system. What we changed is that now we will be using the Crazyradio 2.0. We’re working on updating the demo and seeing what can be improved in the time we have before the conference. As a bonus, we plan to bring some prototypes and surprises; just to show off all the work we’ve been doing since our last conference in Japan.
We will also have Matej Karasek, our partner from Flapper Drones with us in the booth! A good occasion to see his Nimble + in action and ask him all your questions.

Additionally, on Friday afternoon there will be a half-day workshop called ‘The Role of Robotics Simulators for Unmanned Aerial Vehicles’ that we helped organized. This workshop gathers researchers who have struggled to find, customize, or design a robotic simulator for their own purposes or specific application; so don’t hesitate to join if you’ve worked (or plan to) with drone simulation. All the information are here, be sure to sign up for it at your ICRA registration if you’re interested. It can also be attended by a stream by signing up for the virtual ICRA conference.

So we hope to see you in London, at booth H10 for good discussions, interesting conversations, and eventually a cup of tea!

We are excited to announce that we will be having developer meetings on first Wednesdays of every month! Additionally, we are thrilled to be present in person at ICRA 2023 in London. During the same conference, there will be half day workshop called ‘The Role of Robotics Simulators for Unmanned Aerial Vehicles’ so make sure to sign-up! Please check out our newly updated event-page !

Monthly Developer meetings

We have had some online developer meetings in the past covering various topics. While these meetings may not have been the most popular, we believe it is crucial to maintain communication with the community and have interesting discussions, and exchange of ideas. However, we used to plan them ad-hoc and we had no regularity in them, which sometimes caused some of us **cough** especially me **cough**, to create confusion about the timing and location. To remove these factors of templexia (dyslexia for time), we will just have it simply on the first Wednesday of every month.

So our first one with be on Wednesday 5th of April at 15:00 CEST and the information about the particular developer meeting will be as usual on discussions. From 15:00 – 15:30 it will be a general discussion, probably with a short presentation, about a topic to be determined. From 15:30-16:00 will address regular support question from anybody that need help with their work on the Crazyflie.

ICRA 2023 London

ICRA will be held in London this year, from May 29 – June 2nd, atthe ExCel venue. We will be located in the H11 booth in the exhibitor hall, but as the date approaches, we will share more about what awesome prototypes we will showcase and what we will demonstrate on-site. Rest assured, plenty of Crazyflies will be flown in the cage! To get an idea of what we demo-ed last year it IROS Kyoto, please check out the IROS 2022 event page. Matej from Flapper Drones will join us at our booth to showcase the Flapper drone.

We are thinking of organizing a meetup for participants on the Wednesday after the Conference Dinner, so we will share the details of that in the near future as well. Also keep an eye on our ICRA 2023 event page for updated information.

ICRA Aerial Robotic Simulation Workshop

I (Kimberly) will also be present at the ‘The Role of Robotics Simulators for Unmanned Aerial Vehicles‘ workshop on Friday June 2nd. Together with Giuseppe Silano, Chiara Gabellieri and Wolfgang Hönig, we will be organizing a half day workshop focused on UAV-specific simulation in robotics. We have invited some great speakers namely: Tomáš Báča, Davide Scaramuzza, Angela Schoellig and Jaeyoung Lim. The topics will cover multi-YAV simulation to realistic vision-based rending and software-in-the-loop handling for PX4.

Additionally, participants can submit an extended abstract to be invited for an poster presentation during the same workshop. The submission deadline has been extended to April 3rd, so for more information about submission, schedule and speaker info, go to the workshop’s website.

This week’s guest blogpost is from Florian Goralsky from Bok o Bok about their dance piece with multiple Crazyflies. Enjoy!

Flying bodies across the fields is a contemporary dance piece for four performers and a swarm of drones, exploring the phenomenon of the disappearance of bees and the use of pollinating drones to compensate for this loss. The piece attempts to answer this crucial question in a poetical way: can the machine create life and save us from ecological disaster?

Novembre Numérique à l’IFCI © M studio

We’re super excited to talk about a performance that we’ve been working on for the past two years in collaboration with Bitcraze. It premiered at the Environmental Forum, Centre Pompidou Paris, in 2021, and we’ve had the opportunity to showcase it at different venues since then. We are happy to share our thoughts about it!

Choreographic research

Beyond symbolizing current attempts to use drones to pollinate fields, the presence of the Crazyflie drones, supports the back and forth between nature and technology. We integrate a swarm, performing complex choreographies, which refer to the functioning of a beehive, including the famous “bee dance”, discovered by Karl von Frisch, which is used to transmit information on the food sources. Far from having a spectacular performance as its only goal, the synchronization of autonomous drones highlights bio-inspired computer techniques, focused on collective intelligence.

© bok o bok

Challenges within a dance performance

Making a dance performance with drones needs a high accuracy and adaptability, both before and during the show. Usually, we only have a few hours, sometimes even a few minutes, to setup the system according to the space. We quickly realized we needed pre-recorded choreographies, and hybrid choreographies where the pilot could have a few degrees of freedom on pre-defined behaviors.

GUI Editor + Python Server

Taking this into account, we developed a web GUI editor, that is able to send choreographies created with any device to a Websocket Python server. The system supports any absolute positioning system (We use the Lighthouse), and then converts all the setpoints and actions to the Crazyflie API HighLevelCommander class. This system allows us to create, update, and test complex choreographies in a few minutes on various devices.

Preview position of six drones at a certain time.
Early support of the CompressedTrajectories format, with Cubic bezier curves.

What is next?

We are looking forward to developing more dancers-drones interactions in the future. It will imply, in addition to the Lighthouse system, other sensors, in order to open up new possibilities: realtime path-finding, obstacle avoidance even during a recorded choreography (to allow improvisation), etc.

Novembre Numérique à l’IFCI © M studio

It’s time for a new compilation video about how the Crazyflie is used in research ! The last one featured already a lot of awesome work, but a lot happened since then, both in research and at Bitcraze.

As usual, the hardest about making those videos is choosing the works we want to feature – if every cool video of the Crazyflie was in there, it would last for hours! So it’s just a selection of the most videogenic projects we’ve seen. You can find a more extensive list of our products used in research here.

We’ve seen a lot of projects that used the modularity of the Crazyflie to create awesome new features, like a catenary robot, some wall tracking or having it land upside down. The Crazyflie board was even made into a revolving wing drone. New sensors were used, to sniff out gas leaks (the Sniffy bug as seen in this blogpost), or to allow autonomous navigation. Swarms are also a research topic where we see a lot of the Crazyflie, this time for collision avoidance, or path planning. We also see more and more of simulators, which are used for huge swarms or physics tests.

Once again, we were surprised and awed by all the awesome things that the community did with the Crazyflie. Hopefully, this will inspire others to think of new things to do as well. We hope that we can continue with helping you to make your ideas fly, and don’t hesitate to share with us the awesome projects you’re working on!

Here is a list of all the research that has been included in the video:

And, without further ado, here it is:

As already announced in a previous blog post, we have been working on a replacement for the Crazyradio PA. Crazyradio is the USB dongle used to communicate with Crazyflie 2.1, Crazyflie Bolt and any other 2.4GHz radio board we are making. We are also visiting FOSDEM in Brussels at the end of the week and will organize a community dev-meeting about Crazyradio and communication end of February: more on that at the end of the post.

Crazyradio 2.0 will have the following characteristics:

  • Based on the nordic-semiconductor nRF52840
    • 64MHz Cortex-M4
    • 1024KB flash, 256KB ram
    • Radio supporting Nordic protocol, Bluetooth low energy as well as IEEE802.15.4
    • 1Mbps and 2Mbsp bitrate to Crazyflie
    • USB full speed (12Mbps) device
  • Radio power amplifier providing up to +20dBm output power
  • ‘Drag and drop’ bootloader with physical button to start in bootloader mode
  • Same debug port as on the Crazyflie for ease of development

One of the main changes versus the Crazyradio PA will be the available CPU power and ease of development: this will allow to experiment with and implement much more advanced communication protocol like channel hopping and peer-to-peer communication.

On the software side, there will be two modes available for Crazyradio 2.0: a compatibility mode that emulate a Crazyradio PA and should work with all our existing software as well as a new Crazyradio mode that will have a much improved USB protocol allowing for more efficient communication when controlling multiple Crazyflie as well as making it easy to support more protocols in the future.

These two modes will be available as two different firmware and the user can ‘drag and drop’ the firmware with the wanted mode.

As for the Crazyradio PA (version 1), sourcing the components for it has been a bit challenging lately. We will sell Crazyradio PA as long as we have stock for it and the software will continue to support it for the foreseeable future.

Announcements

Kimberly and I, Arnaud, will be visiting the FOSDEM conference at the end of the week in Brussels. If you are there too and want to meet us do not hesitate to drop a message in the comment there, in Github discussions or by mail. It would be great to meet fellow Crazyflie users!

We are also planning an online dev-meeting about Crazyradio 2.0 and communication the 22nd of February 2023. The information about joining will be on Github Discussions. We are interested in talking, and bouncing ideas about radio and communication protocol: with the new Crazyradio we have an opportunity to work on communication protocols to improve them and makes them more useful to modern use of the Crazyflie.

This week’s guest blogpost is from Frederike Dümbgen presenting her latest work from her PhD project at the Laboratory of Audiovisual Communications (LCAV), EPFL, and is currently a Postdoc at the University of Toronto. Enjoy!

Bats navigate using sound. As a matter of fact, the ears of a bat are so much better developed than their eyes that bats cope better with being blindfolded than they cope with their ears being covered. It was precisely this experiment that helped the discovery of echolocation, which is the principle bats use to navigate [1]. Broadly speaking, in echolocation, bats emit ultrasonic chirps and listen for their echos to perceive their surroundings. Since its discovery in the 18th century, astonishing facts about this navigation system have been revealed — for instance, bats vary chirps depending on the task at hand: a chirp that’s good for locating prey might not be good for detecting obstacles and vice versa [2]. Depending on the characteristics of their reflected echos, bats can even classify certain objects — this ability helps them find, for instance, water sources [3]. Wouldn’t it be amazing to harvest these findings in building novel navigation systems for autonomous agents such as drones or cars?

Figure 1: Meet “Crazybat”: the Crazyflie equipped with our custom audio deck including 4 microphones, a buzzer, and a microcontroller. Together, they can be used for bat-like echolocation. The design files and firmware of the audio extension deck are openly available, as is a ROS2-based software stack for audio-based navigation. We hope that fellow researchers can use this as a starting point for further pushing the limits of audio-based navigation in robotics. More details can be found in [4].

The quest for the answer to this question led us — a group of researchers from the École Polytechnique Fédérale de Lausanne (EPFL) — to design the first audio extension deck for the Crazyflie drone, effectively turning it into a “Crazybat” (Figure 1). The Crazybat has four microphones, a simple piezo buzzer, and an additional microprocessor used to extract relevant information from audio data, to be sent to the main processor. All of these additional capabilities are provided by the audio extension deck, for which both the firmware and hardware design files are openly available.1

Video 1: Proof of concept of distance/angle estimation in a semi-static setup. The drone is moved using a stepper motor. More details can be found in [4].

In our paper on the system [4], we show how to use chirps to detect nearby obstacles such as glass walls. Difficult to detect using a laser or cameras, glass walls are excellent sound reflectors and thus a good candidate for audio-based navigation. We show in a first semi-static feasibility study that we can locate the glass wall with centimeter accuracy, even in the presence of loud propeller noise (Video 1). When moving to a flying drone and different kinds of reflectors, the problem becomes significantly more challenging: motion jitter, varying propeller noise and tight real-time constraints make the problem much harder to solve. Nevertheless, first experiments suggest that sound-based wall detection and avoidance is possible (Figure and Video 2).

Video 2: The “Crazybat” drone actively avoiding obstacles based on sound.
Figure 2: Qualitative results of sound-based wall localization on the flying “Crazybat” drone. More details can be found in [4].

The principle we use to make this work is sound-based interference. The sound will “bounce off” the wall, and the reflected and direct sound will interfere either constructively or destructively, depending on the frequency and distance to the wall. Using this same principle for the four microphones, both the angle and the distance of the closest wall can be estimated. This is however not the only way to navigate using sound; in fact, our software stack, available as an open-source package for ROS2, also allows the Crazybat to extract the phase differences of incoming sound at the four microphones, which can be used to determine the location of an external sound source. We believe that a truly intelligent Crazybat would be able to switch between different operating modes depending on the conditions, just like bats that change their chirps depending on the task at hand.

Note that the ROS2 software stack is not limited to the Crazybat only — we have isolated the hardware-dependent components so that the audio-based navigation algorithms can be ported to any platform. As an example, we include results on the small wheeled e-puck2 robot in [4], which shows better performance than the Crazybat thanks to the absence of propeller noise and motion jitter.

This research project has taught us many things, above all an even greater admiration for the abilities of bats! Dealing with sound is pretty hard and very different from other prevalent sensing modalities such as cameras or lasers. Nevertheless, we believe it is an interesting alternative for scenarios with poor eyesight, limited computing power or memory. We hope that other researchers will join us in the quest of exploiting audio for navigation, and we hope that the tools that we make publicly available — both the hardware and software stack — lower the entry barrier for new researchers. 

1 The audio extension deck works in a “plug-and-play” fashion like all other extension decks of the Crazyflie. It has been tested in combination with the flow deck, for stable flight in the absence of a more advanced localization system. The deck performs frequency analysis on incoming raw audio data from the 4 microphones, and sends the relevant information over to the Crazyflie drone where it is converted to the CRTP protocol on a custom driver and sent to the base station for further processing in the ROS2 stack.

References

[1] Galambos, Robert. “The Avoidance of Obstacles by Flying Bats: Spallanzani’s Ideas (1794) and Later Theories.” Isis 34, no. 2 (1942): 132–40. https://doi.org/10.1086/347764.

[2] Fenton, M. Brock, Alan D. Grinnell, Arthur N. Popper, and Richard R. Fay, eds. “Bat Bioacoustics.” In Springer Handbook of Auditory Research, 1992. https://doi.org/10.1007/978-1-4939-3527-7.

[3] Greif, Stefan, and Björn M Siemers. “Innate Recognition of Water Bodies in Echolocating Bats.” Nature Communications 1, no. 106 (2010): 1–6. https://doi.org/10.1038/ncomms1110.

[4] F. Dümbgen, A. Hoffet, M. Kolundžija, A. Scholefield and M. Vetterli, “Blind as a Bat: Audible Echolocation on Small Robots,” in IEEE Robotics and Automation Letters (Early Access), 2022. https://doi.org/10.1109/LRA.2022.3194669.

2023 has already begun, and we have some ideas and hopes on what this new year will mean for Bitcraze. Of course, what 2022 has proven to us is that the world is unpredictable; but it doesn’t stop us from dreaming about our future. So here is what’s in our wishlist for 2023!

Products

We dedicated a good part of the winter to get a new, updated and better Crazyradio, that we will present to you sometime this year. Rumor around the office is that it will solve all problems you can think of, related to communication!

And, even though it’s been a long run, we hope to soon get the Big Quad deck and Bolt out of early access. There are still some things to tweak and documentation to write.

The Nimble + should arrive soon in the store, a drone with flapping wings powered by the Bolt and designed by our friends at Flapper Drones.

Prototypes

There’s always a drawer at Bitcraze that’s full of ideas and prototypes. What we lack to make them come true is time ! We are constantly wondering which of those treasures that will be our next product, and I can’t say anything is for certain, but to give you some ideas, we’ve been playing around with the idea of a brushless Crazyflie, a Glow deck, and are definitely updating some of our current decks.

Community

We really enjoyed meeting people at fairs once again after 2 years of staying put. We don’t know at which conference you will be able to catch us (yet), but we’ll most definitely attend at least 2.

And we will not loose track of our users and hope to get feedback and input as much as possible during our dev meetings or even mini-BAMs.

Bitcraze

We’re still actively looking for teammates, and we hope there’s someone out there that will join us in 2023! Send us a CV if you’re interested.

External dependencies

The components crisis hit us hard in 2020, but it seems we’re gradually coming back to normal. While the world is still full of surprises, we’re happy to have enough stability to still be doing what we like, through pandemics or recessions. Of course, we much rather prefer when things are a little less exciting! We’re cautiously optimistic about 2023, hoping that wars will end and that awareness about climate change will bring out the right habits.

Soon we will have our quarterly meeting, where we try to herd and select our passions and ideas into conceivable plans and actions.

We’re never sure if one year is enough to see all of our plans and hopes go through, but 2023 is still brand new with a lot of possibilities, that we plan to grab with passion. May this new year bring you excitement and passion too!

This year, the traditional Christmas video was overtaken by a big project that we had at the end of November: creating a test show with the help of CollMot.

First, a little context: CollMot is a show company based in Hungary that we’ve partnered with on a regular basis, having brainstorms about show drones and discussing possibilities for indoor drones shows in general. They developed Skybrush, an open- source software for controlling swarms. We have wanted to work with them for a long time.

So, when the opportunity came to rent an old train hall that we visit often (because it’s right next to our office and hosts good street food), we jumped on it. The place itself is huge, with massive pillars, pits for train maintenance, high ceiling with metal beams and a really funky industrial look. The idea was to do a technology test and try out if we could scale up the Loco positioning system to a larger space. This was also the perfect time to invite the guys at CollMot for some exploring and hacking.

The train hall

The Loco system

We added the TDoA3 Long Range mode recently and we had done experiments in our test-lab that indicate that the Loco Positioning systems should work in a bigger space with up to 20 anchors, but we had not actually tested it in a larger space.

The maximum radio range between anchors is probably up to around 40 meters in the Long Range mode, but we decided to set up a system that was only around 25×25 meters, with 9 anchors in the ceiling and 9 anchors on the floor placed in 3 by 3 matrices. The reason we did not go bigger is that the height of the space is around 7-8 meters and we did not want to end up with a system that is too wide in relation to the height, this would reduce Z accuracy. This setup gave us 4 cells of 12x12x7 meters which should be OK.

Finding a solution to get the anchors up to the 8 meters ceiling – and getting them down easily was also a headscratcher, but with some ingenuity (and meat hooks!) we managed to create a system. We only had the hall for 2 days before filming at night, and setting up the anchors on the ceiling took a big chunk out of the first day.

Drone hardware

We used 20 Crazyflie 2.1 equipped with the Loco deck, LED-rings, thrust upgrade kit and tattu 350 mAh batteries. We soldered the pin-headers to the Loco decks for better rigidity but also because it adds a bit more “height-adjust-ability” for the 350 mAh battery which is a bit thicker then the stock battery. To make the LED-ring more visible from the sides we created a diffuser that we 3D-printed in white PLA. The full assembly weighed in at 41 grams. With the LED-ring lit up almost all of the time we concluded that the show-flight should not be longer than 3-4 minutes (with some flight time margin).

The show

CollMot, on their end, designed the whole show using Skyscript and Skybrush Studio. The aim was to have relatively simple and easily changeable formations to be able to test a lot of different things, like the large area, speed, or synchronicity. They joined us on the second day to implement the choreography, and share their knowledge about drone shows.

We got some time afterwards to discuss a lot of things, and enjoy some nice beers and dinner after a job well done. We even had time on the third day, before dismantling everything, to experiment a lot more in this huge space and got some interesting data.

What did we learn?

Initially we had problems with positioning, we got outliers and lost tracking sometimes. Finally we managed to trace the problems to the outlier filter. The filter was written a long time ago and the current implementation was optimized for 8 anchors in a smaller space, which did not really work in this setup. After some tweaking the problem was solved, but we need to improve the filter for generic support of different system setups in the future.

Another problem that was observed is that the Z-estimate tends to get an offset that “sticks” and it is not corrected over time. We do not really understand this and will require more investigations.

The outlier filer was the only major problem that we had to solve, otherwise the Loco system mainly performed as expected and we are very happy with the result! The changes in the firmware is available in this, slightly hackish branch.

We also spent some time testing maximum velocities. For the horizontal velocities the Crazyflies started loosing positioning over 3 m/s. They could probably go much faster but the outlier filter started having problems at higher speeds. Also the overshoot became larger the faster we flew which most likely could be solved with better controller tuning. For the vertical velocity 3 m/s was also the maximum, limited by the deceleration when coming downwards. Some improvements can be made here.

Conclusion is that many things works really well but there are still some optimizations and improvements that could be made to make it even more robust and accurate.

The video

But, enough talking, here is the never-seen-before New Year’s Eve video

And if you’re curious to see behind the scenes

Thanks to CollMot for their presence and valuable expertise, and InDiscourse for arranging the video!

And with the final blogpost of 2022 and this amazing video, it’s time to wish you a nice New Year’s Eve and a happy beginning of 2023!